Struktur RNA
Struktur dasar RNA mirip dengan DNA. RNA merupakan polimer yang tersusun dari sejumlah nukleotida. Setiap nukleotida memiliki satu gugus fosfat, satu gugus gula ribosa, dan satu gugus basa nitrogen (basa N). Polimer tersusun dari ikatan berselang-seling antara gugus fosfat dari satu nukleotida dengan gugus gula ribosa dari nukleotida yang lain.
Perbedaan RNA dengan DNA terletak pada satu gugus hidroksil tambahan pada cincin gula ribosa (sehingga dinamakan ribosa). Basa nitrogen pada RNA sama dengan DNA, kecuali basa timin pada DNA diganti dengan urasil pada RNA. Jadi tetap ada empat pilihan: adenin, guanin, sitosin, atau urasil untuk suatu nukleotida.
Selain itu, bentuk konformasi RNA tidak berupa pilin ganda sebagaimana DNA, tetapi bervariasi sesuai dengan tipe dan fungsinya.
Tipe-tipe RNA
RNA hadir di alam dalam berbagai macam/tipe. Sebagai bahan genetik, RNA berwujud sepasang pita (Inggris double-stranded RNA, dsRNA). Genetika molekular klasik mengajarkan adanya tiga tipe RNA yang terlibat dalam proses sintesis protein:
- RNA-kurir (bahasa Inggris: messenger-RNA, mRNA),
- RNA-ribosom (bahasa Inggris: ribosomal-RNA, rRNA),
- RNA-transfer (bahasa Inggris: transfer-RNA, tRNA).
Pada akhir abad ke-20 dan awal abad ke-21 diketahui bahwa RNA hadir dalam berbagai macam bentuk dan terlibat dalam proses pascatranslasi. Dalam pengaturan ekspresi genetik orang sekarang mengenal RNA-mikro (miRNA) yang terlibat dalam "peredaman gen" atau gene silencing dan small-interfering RNA (siRNA) yang terlibat dalam proses pertahanan terhadap serangan virus.
Fungsi RNA
Pada sekelompok virus (misalnya bakteriofag), RNA merupakan bahan genetik. Ia berfungsi sebagai penyimpan informasi genetik, sebagaimana DNA pada organisme hidup lain. Ketika virus ini menyerang sel hidup, RNA yang dibawanya masuk ke sitoplasma sel korban, yang kemudian ditranslasi oleh sel inang untuk menghasilkan virus-virus baru.
Namun demikian, peran penting RNA terletak pada fungsinya sebagai perantara antara DNA dan protein dalam proses ekspresi genetik karena ini berlaku untuk semua organisme hidup. Dalam peran ini, RNA diproduksi sebagai salinan kode urutan basa nitrogen DNA dalam proses transkripsi. Kode urutan basa ini tersusun dalam bentuk 'triplet', tiga urutan basa N, yang dikenal dengan nama kodon. Setiap kodon berelasi dengan satu asam amino (atau kode untuk berhenti), monomer yang menyusun protein. Lihat ekspresi genetik untuk keterangan lebih lanjut.
Penelitian mutakhir atas fungsi RNA menunjukkan bukti yang mendukung atas teori 'dunia RNA', yang menyatakan bahwa pada awal proses evolusi, RNA merupakan bahan genetik universal sebelum organisme hidup memakai DNA.
Interferensi RNA
Suatu gejala yang baru ditemukan pada penghujung abad ke-20 adalah adanya mekanisme peredaman (silencing) dalam ekspresi genetik. Kode genetik yang dibawa RNA tidak diterjemahkan (translasi) menjadi protein oleh tRNA. Ini terjadi karena sebelum sempat ditranslasi, mRNA dicerna/dihancurkan oleh suatu mekanisme yang disebut sebagai "interferensi RNA". Mekanisme ini melibatkan paling sedikit tiga substansi (enzim dan protein lain). Gejala ini pertama kali ditemukan pada nematoda Caenorhabditis elegans tetapi selanjutnya ditemukan pada hampir semua kelompok organisme hidup.
Hormon Tumbuhan dan Pengatur Tumbuh
Hormon tumbuhan (phytohormones) secara fisiologi adalah penyampai pesan antar sel yang dibutuhkan untuk mengontrol seluruh daur hidup tumbuhan, diantaranya perkecambahan, perakaran, pertumbuhan, pembungaan dan pembuahan. Sebagai tambahan, hormon tumbuhan dihasilkan sebagai respon terhadap berbagai faktor lingkungan kelebihan nutrisi, kondisi kekeringan, cahaya, suhu dan stress baik secara kimia maupun fisik. Oleh karena itu ketersediaan hormon sangat dipengaruhi oleh musim dan lingkungan.
Pada umumnya dikenal lima kelompok hormon tumbuhan: auxins, cytokinins, gibberellins, abscisic acid and ethylene. Namun demikian menurut perkembangan riset terbaru ditemukan molekul aktif yang termasuk zat pengatur tumbuh dari golongan polyamines seperti putrescine or spermidine.
Auxin adalah zat aktif dalam system perakaran. Senyawa ini membantu proses pembiakkan vegetatif. Pada satu sel auxins dapat mempengaruhi pemanjangan cell, pembelahan sel dan pembentukan akar. beberapa type auxins aktif dalam konsentrasi yang sangat rendah antara 0.01 to 10 mg/L.
Cytokinins merangsang pembelahan sel, pertumbuhan tunas, dan mengaktifkan gen serta aktifitas metabolis secara umum.pada saat yang sama cytokinins menghambat pembentukan akar. oleh karenanya cytokinin sangat berguna pada proses kultur jaringan dimana dibutuhkan pertumbuhan yang cepat tanpa pembentukan perakaran. secara umum konsntrasi cytokinin yang digunakan antara 0.1 to 10 mg/L
Gibberellin adalah turunan dari asam gibberelat. Merupakan hormon tumbuhan alami yang merangsang pembungaan, pemanjangan batang dan membuka benih yang masih dorman. Ada sekitar 100 jenis gibberellin, namun Gibberellic acid (GA3)-lah yang paling umum digunakan.
Asam Abscisat (ABA) adalah penghambat pertumbuhan merupakan lawan dari gibberellins: hormon ini memaksa dormansi, mencegah biji dari perkecambahan dan menyebabkan rontoknya daun, bunga dan buah. Secara alami tingginya konsentrasi asam abscisat ini dipicu oleh adanya stress oleh lingkungan misalnya kekeringan.
Ethylene merupakan senyawa unik dan hanya dijumpai dalam bentuk gas. senyawa ini memaksa pematangan buah, menyebabkan daun tanggal dan merangsang penuaan. Tanaman sering meningkatkan produksi ethylene sebagai respon terhadap stress dan sebelum mati. Konsentrasi Ethylene fluktuasi terhadap musim untuk mengatur kapan waktu menumbuhkan daun dan kapan mematangkan buah.
Polyamines mempunyai peranan besar dalam proses genetis yang paling mendasar seperti sintesis DNA dan ekspresi genetika. Spermine dan spermidine berikatan dengan rantai phosphate dari asam nukleat. Interaksi ini kebanyakkan didasarkan pada interaksi ion elektrostatik antara muatan positif kelompok ammonium dari polyamine dan muatan negatif dari phosphat.
Polyamine adalah kunci dari migrasi sel, perkembangbiakan dan diferensiasi pada tanaman dan hewan. Level metabolis dari polyamine dan prekursor asam amino adalah sangat penting untuk dijaga, oleh karena itu biosynthesis dan degradasinya harus diatur secara ketat.
Polyamine mewakili kelompok hormon pertumbuhan tanaman, namun merekan juga memberikan efek pada kulit, pertumbuhan rambut, kesuburan, depot lemak, integritas pankreatis dan pertumbuhan regenerasi dalam mamalia. Sebagai tambahan, spermine merupakan senyawa penting yang banyak digunakan untuk mengendapkan DNA dalam biologi molekuler. Spermidine menstimulasi aktivitas dari T4 polynucleotida kinase and T7 RNA polymerase dan ini kemudian digunakan sebagai protokol dalam pemanfaatan enzim
Basa nukleotida
Pasangan basa nukleotida (warna biru) pada RNA.
Basa nukleotida (atau nukleobasa) merujuk pada bagian pada DNA dan RNA yang dapat terlibat dalam pemasangan basa (lihat pula pasangan basa), utamanya adalah sitosina, guanina, adenina (DNA dan RNA), timina (DNA) dan urasil (RNA), secara berurutan disingkat C, G, A, T, dan U. Dalam genetika, basa nukleotida tersebut biasanya hanya disebut sebagai basa atau basa N (N singkatan dari nitrogen, karena memiliki gugus amina yang beratom nitrogen). Karena A, G, C, dan T muncul pada DNA, molekul-molekul ini dsebut basa DNA, sedangkan A, G, C, dan U disebut basa RNA.
Urasil menggantikan timina pada RNA. Kedua basa ini identik terkecuali bahwa urasil kekurangan gugus 5' metil. Adenina dan guanina merupakan kelas molekul bercincin dua yang disebut purina (disingkat sebagai R). Sitosina, timina, dan urasil semuanya merupakan pirimidina (disingkat Y).
Basa yang secara kovalen berikatan dengan karbon 1' ribosa atau deoksiribosa disebut sebagai nukleosida, dan nukleosida yang memiliki gugus fosfat pada karbon 5' disebut sebagai nukleotida.
Selain adenosina (A), sitidina (C), guanosina (G), timidina (T) dan uridina (U), DNA dan RNA juga mengandung basa-basa yang telah dimodifikasi setelah rantai asam nukelat terbentuk. Pada DNA, basa satu-satunya yang dimodifikasi adalah 5-metilsitidina (m5C). Pada RNA, terdapat banyak basa yang dimodifikasi, meliputi pseudouridina (Ψ), dihidrouridina (D), inosina (I), ribotimidina (rT) dan 7-metilguanosina (m7G).[1][2]
Hipoxantina dan xantina merupakan salah satu basa yang terbentuk oleh keberadaan mutagen. Keduanya terbentuk melalui proses deaminasi. Hipoxantina dihasilkan dari adenina, dan xantina dari guanina.[3] Dengan cara yang sama, deaminasi sitosina menghasilkan urasil.
Struktur
- Struktur kerangka adenina dan guanina merupakan purina, sehingga ia dinamakan basa purina.
- Struktur kerangka sitosina, urasil, dan timina merupakan pirimidina, sehingga dinamakan basa pirimidina.
Basa utama
Basa-basa berikut terlibat dalam pemanjangan rantai selama sintesis RNA atau DNA.
Basa nukleotida | |||||
Nukleosida | Timidina T | Sitidina C | Uridina U |
Basa purina yang dimodifikasi
Contoh-contoh adenosina dan guanosina yang dimodifikasi.
Basa nukleotida | |||
Nukleosida | Inosina I | 7-Metilguanosina m7G |
Basa pirimidina yang dimodifikasi
Contoh-contoh sitidina, timidina, dan uridina yang dimodifikasi.
Basa nukleotida | |||
Nucleosida | 5-Metilsitidina m5C |
Nukleosida
Nukleosida merupakan sebutan untuk bagian dari nukleotida tanpa gugus fosfat. Dengan demikian, nukleosida tersusun dari gula ribosa atau deoksiribosa dan basa nitrogen.
Nukleosida merupakan kerangka dasar bagi terbentuknya AMP, ADP, dan ATP. Proses pembentukan ketiga senyawa pembawa energi kimia ini biasanya terjadi di mitokondria sebagai bagian dari reaksi katabolisme/respirasi.
Lumayan rumit mempelajari gen, banyak kemungkinan yang mempengaruhi...
BalasHapusRingkasnya, "Tidak akan berubah nasib suatu kaum Kecuali ia merubahnya"Ar-Ra'du